

Damir Demirović ¹ Amira Šerifović-Trbalić ¹ Naser Prljača ¹ Philippe C. Cattin ²

¹University of Tuzla, Faculty of Electrical Engineering, Tuzla, Bosnia and Herzegovina

²Medical Image Analysis Center, University of Basel, Basel, Switzerland

29. May 2014

Medical I mage Analysis Center

Introduction

- Image enhancement plays an important role in different research fields such as medical image analysis.
- The most popular methods for image processing and analysis are very resource hungry.
- We investigate the possibilities and limitations of well known Demons algorithm implemented for mobile Android device.
- To our knowledge there is no implementation of Demons registration method for Android platform.
- The contributions of this work are:
 - Implementation of the Thirions Demons registration algorithm on ARM CPUs running Android.
 - Speeding-up the implementation using hardware optimizations
 - ► Performance evaluation for Gaussian parameters.

Demons registration

- Image registration tries to find a mapping from one coordinate system of one image to the coordinate system of the other image.
- The one of the most widely used deformable registration algorithm is Demons registration algorithm.
- Advantages: widely known, simple to use, linear computational complexity, easily parallelizable.

Page 2

Implementation for an Android device

- Android platform is now a world dominant in mobile platform market.
- Applications are developed in the Java language using Android Software Development Kit (SDK).
- Resouce consuming parts can be with C/C++ language using Native Development Kit (NDK)
- With NDK we can exploit Single Instruction, Multiple Data (SIMD) optimizations
- For Tegra 3 and Samsung Exynos platforms optimizations for ARM V7 instructions with NEON instructions can be used.

Hardware and Software

 Used devices were: desktop (small laptop, home PC, server machine), cell phones and tablet.

GCC 4.6.3 compiler with optimizations using GNU/Linux.

Device #	Processor	Threads/Cores/GHz	Cache L1/L2/L3	Memory (GB)	SIMD	Power (W)
1	Intel® Core TM i5-2500 Pro- cessor	4/4/3.3	4x32/4x256kB/6MB	4	SSE4.2	95
2	Intel(R) Xeon(R) CPU E5450	4/4/3	4x32kB/2x6MB/	8	SSE4.1	80
3	Intel Celeron M ULV 900MHz	1/1/900MHz	1/512kB7/-	512MB	No	5
4	Samsung S3	4/4/1.2	31kB+31kB/1MB-	1	Neon	3 (est)
5	Nexus7 ARM Cortex A9	4/4/1.2	31kB+31kB/1MB-	1	Neon	1.1

4/4/1.2

TABLE II. DEVICES SPECIFICATION

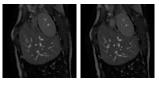
Table : Optimization parameters for GCC compilers

31kB+31kB/1MB-

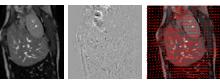
512MB

No

Platform	Optimization string						
Desktop	-02						
ARMv7	-march=armv7-a -mtune=cortex-a9 -mfloat-abi=softfp mfpu=neon	-					
ARMv6	ARMv6 -march=armv6 -marm -mfloat-abi=softfp -mfpu=vfp						



6


Wildfire S

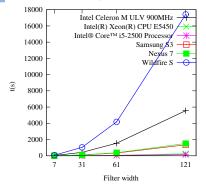
Results

- Two MRI liver images 256 × 256 were used in all experiments.
- We varied Gaussian parameters in Demons: kernel width, and *σ*.

(b)

(e)

(c) (d)


Figure : Images used for registration a) fixed b) moving c) registered

Page 2 d) difference after registration e) overlayed deformation field 21 May. 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Results (2)

Running times for all devices

Figure : Registration results for all devices

		Param	neters	Device #					-	
	Image size	width	σ	1	2	3	4	5	6	
	256×256	7	1.0	1.5	1.2	34.3	8.6	9.7	30.1	
		31	5.0	12.8	18.2	422.7	91.2	103.3	1033.8	
		61	10.0	42.2	63.2	1549.9	338.8	379.6	4175.5	
		121	20.0	144.7	245.9	5558.1	1351.2	1514.3	17414.5	
Page 2										

21 May, 2014 DC VIS - Distributed Computing, Visualization and Biomedical Engineering www.mipro.hr

Discussion and Future Work

- Results shows, in general, that mobile devices cannot compete with desktop CPUs in higly demanding tasks like image registrations.
- Can be used as an alternative with smaller Gaussian kernel widths, (i.e. smaller deformations).
- ► The best results were about 9 times slower than desktop.
- Further research in this direction can evaluate tradeoff between registration precision and execution times regarding floating point optimizations.
- Another possibility is multicore implementation of Demons algorithm on the ARM CPUs, i.e. implementation using Threading Building Blocks (TBB).

Acknowledgement

This work has been supported by the SCOPES project of the Swiss National Science Foundation (http://www.snf.ch) Thank you for your attention

